Contents

<table>
<thead>
<tr>
<th>Award or Program</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Awards and Rules</td>
<td>394</td>
</tr>
<tr>
<td>Graduate Certificate in Computer Science</td>
<td>397</td>
</tr>
<tr>
<td>Specific Course Rules</td>
<td></td>
</tr>
<tr>
<td>Graduate Certificate in Mathematical Signal and Information Processing</td>
<td>398</td>
</tr>
<tr>
<td>Specific Course Rules</td>
<td></td>
</tr>
<tr>
<td>Graduate Certificate in Mathematics Education</td>
<td>400</td>
</tr>
<tr>
<td>Specific Course Rules</td>
<td></td>
</tr>
<tr>
<td>Graduate Certificate in Telecommunications</td>
<td>403</td>
</tr>
<tr>
<td>Specific Course Rules</td>
<td></td>
</tr>
<tr>
<td>Graduate Diploma in Applied Statistics</td>
<td>405</td>
</tr>
<tr>
<td>Specific Course Rules</td>
<td></td>
</tr>
<tr>
<td>Graduate Diploma in Computer Science</td>
<td>407</td>
</tr>
<tr>
<td>Specific Course Rules</td>
<td></td>
</tr>
<tr>
<td>Syllabuses</td>
<td>408</td>
</tr>
<tr>
<td>Master of Mathematical Science</td>
<td></td>
</tr>
<tr>
<td>M.Math.Sc.</td>
<td>418</td>
</tr>
<tr>
<td>Specific Course Rules</td>
<td></td>
</tr>
<tr>
<td>Master of Mathematical Sciences (Signal and Information Processing)</td>
<td>421</td>
</tr>
<tr>
<td>M.Math.Sc.(Sig.Info.Proc.)</td>
<td></td>
</tr>
<tr>
<td>Specific Course Rules</td>
<td></td>
</tr>
<tr>
<td>Syllabuses</td>
<td></td>
</tr>
<tr>
<td>Master of Science in the School of Mathematical and Computer Sciences</td>
<td>423</td>
</tr>
<tr>
<td>M.Sc.</td>
<td></td>
</tr>
<tr>
<td>Specific Course Rules</td>
<td></td>
</tr>
<tr>
<td>Doctor of Science in the School of Mathematical and Computer Sciences</td>
<td></td>
</tr>
<tr>
<td>D.Sc.</td>
<td></td>
</tr>
<tr>
<td>Academic Program Rules available from the</td>
<td></td>
</tr>
<tr>
<td>School of Mathematical and Computer Sciences</td>
<td></td>
</tr>
</tbody>
</table>
Postgraduate awards in the School of Mathematical and Computer Sciences

Graduate Certificate in Computer Science
Graduate Certificate in Mathematical Signal and Information Processing
Graduate Certificate in Mathematics Education
Graduate Certificate in Telecommunications
Graduate Diploma in Applied Statistics
Graduate Diploma in Computer Science
Graduate Diploma in Mathematical Science
Master of Applied Science (Communications)
Master of Computer Science
Master of Information Technology
Master of Mathematical Science
Master of Mathematical Sciences (Signal and Information Processing)
Master of Science in the School of Mathematical and Computer Sciences

Notes on Delegated Authority
1 Council has delegated the power to approve minor changes to the General Academic Program Rules to the Convenor of the Academic Board.
2 Council has delegated the power to approve minor changes to the Specific Academic Program Rules to the Executive Deans of Faculties.
3 Council has delegated the power to specify syllabuses to the Head of each department or centre concerned, such syllabuses to be subject to approval by the Faculty or by the Executive Dean on behalf of the Faculty. The Head of department or centre may approve minor changes to any previously approved syllabus.
4 There is also the degree of Doctor of Engineering, whose rules are available on application to the School Office.
The University is currently in the process of implementing a new information systems infrastructure. This includes a new Student Administration system. A consequence of this initiative is that the University has adopted a new set of nomenclature to describe its academic awards and curriculum offerings.

The changes in terminology that will be noticed in the Handbook of Academic Programs are as follows:

<table>
<thead>
<tr>
<th>Academic Program</th>
<th>Is used to describe academic awards which were previously referred to as Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course</td>
<td>Is used to describe syllabus offerings which were previously referred to as Subjects</td>
</tr>
<tr>
<td>Unit</td>
<td>Is used to describe the value the course contributes to program completion previously referred to as Points</td>
</tr>
</tbody>
</table>
Graduate Certificate in Computer Science

The above award has been developed within the framework of the General Academic Program Rules printed at the beginning of this volume of the Handbook. As all students must comply with both the General and Specific Academic Program rules, they are advised to refer to them to gain an understanding of their rights and responsibilities regarding program matters.

Specific Academic Program Rules

1 Duration of program
To qualify for the Graduate Certificate a candidate shall complete satisfactorily a program of full-time study extending over at least one semester or of part-time study extending over at least two semesters. A candidate shall take not more than six consecutive semesters to complete the requirements of the Certificate.

2 Admission
2.1 Except as provided in 2.2 below, an applicant for admission to the program for the Graduate Certificate shall have qualified for a degree of the University or a degree of another institution accepted by the Faculty for the purpose as equivalent to a degree of this University.

2.2 Subject to the approval of the Council, the Faculty may, in special cases and subject to such conditions (if any) as it may see fit to impose in each case, accept as a candidate for the Graduate Certificate a person who does not hold a degree of a tertiary institution but has given evidence satisfactory to the Faculty of fitness to undertake work for the Graduate Certificate.

2.3 A knowledge of SACE Stage 2 Mathematics I or its equivalent is assumed.

2.4 A person who holds any of the following qualifications shall not be eligible for the award of the Graduate Certificate in Computer Science: a degree that includes a major in Computer Science or its equivalent; the Diploma in Computer Science, Master of Computer Science of Adelaide University, or equivalent qualifications in Computer Science.

2.5 Credit Transfer
2.5.1 A candidate who has passed courses in this or other educational institutions and who has not presented these courses towards an award may, on written application, be granted such exemption from the requirements of these rules as the Faculty shall determine. Status may be granted for a maximum of 3 units under 4.1 of the Specific Academic Program Rules.

2.5.2 No candidate will be permitted to count for the Graduate Certificate any course that in the opinion of the Department contains substantially the same material as any other course which he or she has presented already for another qualification.

3 Assessment and examination
3.1 There shall be four classifications of pass at an examination in any course for the Graduate Diploma: Pass with High Distinction, Pass with Distinction, Pass with Credit and Pass.

3.2 A candidate shall not be eligible to attend for examination unless the prescribed work has been completed to the satisfaction of the teaching staff concerned. A candidate who is not eligible to present for examination or final assessment shall be deemed to have failed the examination/final assessment.

3.3 A candidate who has twice failed to pass the examination in any course or division of a course may not enrol for that course again except by special permission to be obtained in writing from the Faculty and then only under such conditions as may be prescribed.

4 Qualification requirements
4.1 To qualify for the Graduate Certificate the candidate shall satisfactorily complete courses to the value of at least 12 units listed in 4.1 for the degree of Graduate Diploma in Computer Science, except 6263 Software Engineering and Project.

Syllabuses
See Graduate Diploma in Computer Science
Graduate Certificate in Mathematical Signal and Information Processing

The above award has been developed within the framework of the General Academic Program Rules printed at the beginning of this volume of the Handbook. As all students must comply with both the General and Specific Academic Program rules, they are advised to refer to them to gain an understanding of their rights and responsibilities regarding program matters.

Note: Postgraduate tuition fees may apply to this program

Specific Academic Program Rules

1 Duration of program
1.1 A candidate shall:
(a) complete any preliminary work which may be prescribed;
(b) undertake an approved program of advanced part-time study which extends over not less than one and not more than two years.

2 Admission
2.1 Except as provided for in 2.2 an applicant for admission to the program of study for the Graduate Certificate shall:

have qualified for an Honours degree of Bachelor of Science in either Mathematics or Physics or a degree of Bachelor of Engineering (Electrical and Electronic) with Honours of Adelaide University, or for an equivalent degree of another tertiary institution accepted for the purpose by the University

or

2.2 have qualified for a degree with Honours in other areas of Engineering, or an Honours degree in a related scientific area acceptable for the purpose to the Faculty. A person admitted under this sub-Rule will normally be required satisfactorily to complete some initial bridging studies as deemed necessary by the Faculty, in addition to satisfying the requirements of the Graduate Certificate.

2.3 Subject to the approval of the Council, the Faculty may, in special cases and subject to such conditions (if any) as it may see fit to impose in each case, accept as a candidate for the Certificate a person who does not qualify for admission under 2.1 or 2.2 but who has given evidence satisfactory to the Faculty of fitness to undertake work for the Certificate.

3 Assessment and examination

Review of academic progress
If in the opinion of the School of Mathematical and Computer Sciences a candidate for the Graduate Certificate is not making satisfactory progress, the School may, with the consent of the Council, terminate the candidature.

4 Qualification requirements
4.1 To qualify for the degree a candidate shall:
(a) comply with conditions as prescribed in the Specific Academic Program Rules and
(b) pass such examinations on the candidate’s program of advanced study as may be required by the Faculty.

4.2 Unacceptable combinations of courses
A candidate may not count towards the Graduate Certificate a course or closely related course or part of a course that has already been presented for another degree or diploma.

4.3 Program of study
4.3.1 A candidate for the Graduate Certificate shall regularly attend lectures and tutorials, do such written and practical work as may be prescribed, and satisfactorily complete courses to the value of at least 12 units as defined in 4.3.2.

4.3.2 The program of study to the value of at least 12 units shall consist of courses selected from:

- 6880 Detection, Estimation and Classification 2
- 7216 Introduction to Discrete Linear Systems 2
- 8204 Signal Synthesis and Analysis 2
- 6215 Adaptive Signal Processing 2
- 6870 Beamforming and Array Processing 2
<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>3938</td>
<td>Coding and Cryptology III</td>
<td>2</td>
</tr>
<tr>
<td>2277</td>
<td>Error Control Coding</td>
<td>2</td>
</tr>
<tr>
<td>4106</td>
<td>Image Processing</td>
<td>2</td>
</tr>
<tr>
<td>1519</td>
<td>Information Theory</td>
<td>2</td>
</tr>
<tr>
<td>1724</td>
<td>Kalman Filtering and Tracking</td>
<td>2</td>
</tr>
<tr>
<td>2302</td>
<td>Mobile Communications</td>
<td>2</td>
</tr>
<tr>
<td>1074</td>
<td>Multisensor Data Fusion</td>
<td>2</td>
</tr>
<tr>
<td>5173</td>
<td>Signal Processing Applications</td>
<td>2</td>
</tr>
<tr>
<td>5640</td>
<td>Satellite Communications</td>
<td>2</td>
</tr>
<tr>
<td>3050</td>
<td>Specialised Studies A</td>
<td>2</td>
</tr>
<tr>
<td>3078</td>
<td>Specialised Studies B</td>
<td>2</td>
</tr>
<tr>
<td>3145</td>
<td>Specialised Studies C</td>
<td>2</td>
</tr>
<tr>
<td>3199</td>
<td>Specialised Studies D</td>
<td>2</td>
</tr>
<tr>
<td>4327</td>
<td>Speech Processing</td>
<td>2</td>
</tr>
</tbody>
</table>

Specialised Studies may consist of directed readings or approved short courses as approved by the Faculty. The content and assessment of these courses will be determined in each case by the academic coordinator of the program in consultation with the student’s supervisor and the student.

Note: Intending students should consult the program coordinator early in the year in which they plan to study in order to ascertain whether particular courses will be available in that year and in which semester courses will be taught.

4.3.3 Candidates who have been granted exemption from one or more of the courses listed in 4.3.2 may select in their place relevant courses from other courses offered by Adelaide University or other tertiary institutions in South Australia as may be approved by the School of Mathematical and Computer Sciences.

4.3.4 The availability of all courses is conditional on there being adequate staffing levels and resources.
Graduate Certificate in Mathematics Education

The above award has been developed within the framework of the General Academic Program Rules printed at the beginning of this volume of the Handbook. As all students must comply with both the General and Specific Academic Program rules, they are advised to refer to them to gain an understanding of their rights and responsibilities regarding program matters.

Specific Academic Program Rules

1 Duration of program
Except with the special permission of the Faculty the program for the Certificate shall be completed in not more than two years of part-time study.

2 Admission
2.1 An applicant for admission to the program of study for the Graduate Certificate shall:
(a) have qualified for a degree and a Graduate Diploma in Education of the University or hold qualifications from another institution accepted by the University for the purpose.
(b) have completed such other work as may be prescribed in the Specific Academic Program Rules.

2.2 Subject to the approval of the Council, the Faculty may, in special cases and subject to such conditions as it may see fit to impose in each case, accept as a candidate for the Certificate an applicant who does not satisfy the requirements of 2.1(a) and (b) above but who has given evidence satisfactory to the Faculty of fitness to undertake work for the Certificate.

3 Assessment and examination
Review of academic progress
If in the opinion of the Faculty a candidate for the Certificate is not making satisfactory progress, the Faculty may, with the consent of the Council, terminate the candidature and the candidate shall cease to be enrolled for the Certificate.

4 Qualification requirements
4.1 To qualify for the Certificate a candidate shall satisfactorily complete a program of study and comply with conditions as prescribed in the Specific Academic Program Rules.

4.2 Program of study
4.2.1 To qualify for the Certificate a candidate shall satisfactorily complete courses from 4.3 below with an aggregate value of at least 12 units satisfying the following requirements:

(a) Unless otherwise agreed by the Faculty, the courses presented for the Certificate must include Core courses with an aggregate value of at least 8 units.
(b) The courses presented for the Certificate shall not include any course which is, in the opinion of the Faculty, substantially equivalent to another course presented for the Certificate or already counted towards another qualification gained by the candidate.

4.2.2 Candidates wishing to enrol in courses for which they do not have the necessary preliminary knowledge may be required to take such bridging studies prior to the commencement of their Certificate studies as may be deemed appropriate by the Dean (or nominee).

4.2.3 To complete a program of study, a candidate, unless exempted by the Faculty, shall:
(a) regularly attend the prescribed lectures, tutorials, workshops and seminars; and
(b) undertake such computing work, practical work, field work and case studies, do such reading, written and oral work and pass such examinations, as the Faculty may prescribe.

4.2.4 The syllabus for each course for the Certificate shall specify whether passes shall be non-graded or whether there shall be four classifications of pass: Pass with High Distinction, Pass with Distinction, Pass with Credit, and Pass.

4.3 Program of study
The following shall be the courses for the Graduate Certificate in Mathematics Education:

4.3.1 core courses (provisional list)

| Group A |
|-----------------|----------|
| 9143 | School Mathematics Curriculum | 2 |
| 4931 | Exploratory Data Analysis | 2 |
| 3825 | Geometry for Teachers | 2 |
| 1231 | Thinking Mathematically | 2 |
| 7724 | Applying Mathematics | 2 |
The School of Mathematical and Computer Sciences, in cooperation with the Department of Education offers a Graduate Certificate in Mathematics Education. The aim of the program is to enable graduates in teaching to gain professional development in modern mathematics content and processes, in mathematics education and in relevant teaching methodology, within an applied context.

The program is intended for holders of a qualification for teaching at diploma or degree level, or equivalent (for example a three-year degree plus a diploma or a four-year bachelor of education degree). Graduates wishing to enrol should consult Adelaide University Liaison Officer, Graduate Certificate in Mathematics Education, through the Office of the Dean in early October of the year before they plan to enrol.

In some cases, students may need to undertake preliminary bridging studies prior to the time of enrolment, to ensure that they have the necessary mathematical background indicated in the syllabuses.

Each student will be assigned a supervisor who will advise, where applicable, on project work, directed reading and selection of courses. At enrolment time, following consultation between the student and supervisor, each student’s program must be formally approved by the Dean or nominee (normally by the Liaison Officer).

The program may be taken in up to two years of part-time study. It consists of courses with an aggregate value of at least 12 units, not equivalent to courses already offered by the candidate for another award. These courses must include core courses with an aggregate value of at least 8 units. (If courses equivalent to core courses have been offered for another award, other courses may be specified in their place.)

The core courses are currently offered in a joint program by the South Australian higher education institutions, in association with the Adelaide Consortium for Mathematics Education. A 2 unit core course typically involves 26 to 30 contact hours; some courses will be based entirely on seminars and workshops while others will involve formal lectures with some associated workshops.

The core courses are divided into two groups and normally a student’s core courses will all be from the same group. Group A core courses are intended as a basis for ‘re-skilling’ of teachers who are currently teaching some junior secondary mathematics, or who wish to undertake such teaching, but whose training was in some other area (for example, science). Group B core courses

Group B
- 8762 Modern Statistics 2
- 2741 Modelling with Mathematics 2
- 8575 Discrete Mathematics 2
- 1707 Mathematics in Education 2

4.3.2 further courses

Group C
- 7798 Certificate Project 2
- 6162 Certificate Project (Full-Year) 2
- 3923 Minor Certificate Project 1
- 7843 Certificate Mathematical Studies 2
- 3404 Directed Reading Studies 2
- 8289 Minor Directed Reading Studies 1

Group D
Any other mathematical sciences or mathematics education course or other relevant course offered within Adelaide University and approved for the purpose by the Dean (or nominee).

Group E
Other mathematical sciences or mathematics education courses which may be offered from time to time by The Flinders University of South Australia and the University of South Australia and are approved for the purpose by the Dean (or nominee).

4.3.3 Each year the Faculty shall determine which of the above courses will be offered in the following year and in which semesters they will be offered.

4.3.4 Notwithstanding the above, the availability of all courses is conditional on the availability of staff and facilities.
are intended for professional development of mathematics specialist teachers who wish to update their background in mathematics relevant to the senior secondary curriculum, in mathematics education and teaching methodology and in the use of modern technology. While the program focuses mainly on these two categories, other applicants (for example, primary teachers) will be accepted if a satisfactory program of study appropriate to their needs is available within the framework of the Certificate.

Students enrolled for the Certificate at Adelaide University will usually select their non-core courses from Group C, which comprises courses offered at Adelaide University. They will normally include a course whose work requirement consists of a project.

In the program for the Certificate there will be an emphasis on applications, investigations and problem-solving, and all students will take some courses involving the use of computer packages (though no knowledge of computer programming is required). Project work may involve practical experience in industry, business or a school or tertiary education.

Students who enrol for the degrees of Bachelor of Educational Studies, Master of Educational Studies or Master of Education awards are able to apply for credit to a maximum value of 12 units on account of work completed towards this Graduate Certificate.
Graduate Certificate in Telecommunications

The above award has been developed within the framework of the General Academic Program Rules printed at the beginning of this volume of the Handbook. As all students must comply with both the General and Specific Academic Program rules, they are advised to refer to them to gain an understanding of their rights and responsibilities regarding program matters.

Note: Postgraduate tuition fees may apply to this program

Specific Academic Program Rules

1 Duration of program
To qualify for the Graduate Certificate a candidate shall complete satisfactorily a program of full-time study extending over at least one semester or of part-time study extending over at least two semesters.

2 Admission
2.1 Except as provided for in 2.2 an applicant for admission to the program of study for the Graduate Certificate shall:
(a) have qualified for a degree of the University or for a degree of another institution accepted for the purpose by the University
(b) have obtained the approval of the Dean (or nominee) of the School of Mathematical and Computer Sciences.
2.2 Subject to the approval of the Council the Faculty may, in special cases and subject to such conditions (if any) as it may see fit to impose in each case, accept as a candidate for the Certificate a person who does not qualify for admission to the program under 2.1 (a) and (b) but has given evidence satisfactory to the Faculty of fitness to undertake work for the Certificate.

3 Assessment and examinations
3.1 There shall be four classifications of pass in each course for the Certificate: Pass with High Distinction, Pass with Distinction, Pass with Credit, and Pass.
3.2 A candidate shall not be eligible to attend for examination unless the prescribed work has been completed to the satisfaction of the teaching staff concerned.
3.3 A candidate who fails in a course and desires to take the course again shall again attend lectures and satisfactorily do such written and practical work as the teaching staff concerned may prescribe, unless specifically exempted therefrom after written application for such exemption.
3.4 A candidate who has twice failed the examination in any course or division of a course may not enrol for that course again except by special permission to be obtained in writing and then only under such conditions as may be prescribed.
3.5 For the purpose of this Rule a candidate who is refused permission to sit for examination, or who without a reason accepted by the Dean of Mathematical and Computer Sciences (or nominee) fails to attend all or part of a final examination (or supplementary examination if granted) after remaining enrolled for at least eight teaching weeks of that semester, shall be deemed to have failed the examination.

4 Qualification requirements
4.1 To qualify for the Certificate a candidate shall satisfactorily complete a program of full-time study extending over at least one semester or of part-time study extending over at least one year. Except with the permission of the Faculty the work for the Certificate shall be completed within two years.
4.2 Program of study
4.2.1 The Graduate Certificate in Telecommunications is a collaborative program between the Schools of Mathematical and Computer Sciences and Engineering and is administered by the School of Mathematical and Computer Sciences.
4.2.2 To qualify for the certificate a candidate shall satisfactorily complete courses from 4 with an aggregate units value of at least 12 and satisfy the requirement that the courses presented shall not include any which is, in the opinion of the Faculty, substantially equivalent to another course presented for the Certificate or already counted towards another qualification gained by the candidate.
4.2.3 Candidates wishing to enrol in courses for which they do not have the necessary preliminary knowledge may be required to take such bridging studies prior to the commencement of their Certificate studies as may be deemed appropriate by the Dean of the School of Mathematical and Computer Sciences (or nominee).

4.2.4 To complete a program of study, a candidate, unless exempted by the School, shall:

(a) regularly attend the prescribed lectures, tutorials, workshops and seminars; and
(b) undertake such computing work, practical work, field work and case studies, do such reading, written and oral work and pass such examinations, as the School may prescribe.

4.2.5 Each candidate’s program of study must be approved by the Dean of the School of Mathematical and Computer Sciences (or nominee) at enrolment each year.

4.3 Program of study

4.3.1 The following shall be the courses for the Graduate Certificate in Telecommunications.

(a) Group A: School of Mathematical and Computer Sciences

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>3908</td>
<td>Communication Network Design</td>
<td>2</td>
</tr>
<tr>
<td>8427</td>
<td>Mathematical Coding and Cryptology</td>
<td>2</td>
</tr>
<tr>
<td>2039</td>
<td>Mathematical Programming III</td>
<td>2</td>
</tr>
<tr>
<td>2314</td>
<td>Optimisation III</td>
<td>2</td>
</tr>
<tr>
<td>2208</td>
<td>Stochastic Modelling for Telecommunications III</td>
<td>2</td>
</tr>
<tr>
<td>4485</td>
<td>Teletraffic Models</td>
<td>2</td>
</tr>
<tr>
<td>9694</td>
<td>Transform Methods and Signal Processing</td>
<td>2</td>
</tr>
</tbody>
</table>

(b) Group B: Electrical and Electronic Engineering Department

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1008</td>
<td>Advanced Signal Processing</td>
<td>1</td>
</tr>
<tr>
<td>1664</td>
<td>Broadband and ATM Networks</td>
<td>1</td>
</tr>
<tr>
<td>7797</td>
<td>Distributed Systems and Multimedia Communications</td>
<td>1</td>
</tr>
<tr>
<td>1290</td>
<td>Optical Communications</td>
<td>1</td>
</tr>
<tr>
<td>9416</td>
<td>Real Time Systems</td>
<td>1</td>
</tr>
<tr>
<td>9913</td>
<td>Signal Processing A</td>
<td>1</td>
</tr>
<tr>
<td>7663</td>
<td>Signal Processing B</td>
<td>1</td>
</tr>
</tbody>
</table>

(c) Group C: Electronic Engineering, University of South Australia

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Communications System Theory</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Digital Transmission</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Error Control Coding</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Mobile Communications</td>
<td>2</td>
</tr>
</tbody>
</table>

(d) Group D

Other relevant courses or work as may be approved by the Dean of Mathematical and Computer Sciences (or nominee).

4.3.2 Each year the Faculty shall determine which of the above courses will be offered in the following year.

4.3.3 Notwithstanding the above, the availability of all courses is conditional on the availability of staff and facilities.

Syllabuses

The degree draws upon courses on telecommunications given by the Departments of Mathematics and Electrical and Electronic Engineering at Adelaide University and by the School of Electronic Engineering at the University of South Australia.

It is designed to broaden the participants’ knowledge of telecommunications by utilising the wide spread of knowledge and experience in South Australian universities.
Graduate Diploma in Applied Statistics

The above award has been developed within the framework of the General Academic Program Rules printed at the beginning of this volume of the Handbook. As all students must comply with both the General and Specific Academic Program rules, they are advised to refer to them to gain an understanding of their rights and responsibilities regarding program matters.

Note: Postgraduate tuition fees may apply to this program

Specific Academic Program Rules

1 Duration of program
To qualify for the Graduate Diploma a candidate shall satisfactorily complete a program of full-time study extending over at least one year or of part-time study extending over at least two years.

2 Admission
2.1 Except as provided for in 2.2 a candidate for admission to the program for the Graduate Diploma shall have qualified for admission to a degree of the University or to a degree of another university accepted for the purpose by the University and have obtained the approval of the Faculty.

2.2 Subject to the approval of the Council the Faculty may, in special cases and subject to such conditions (if any) as it may see fit to impose in each case, accept as a candidate for the Graduate Diploma a person who does not hold a degree of a university but has given evidence satisfactory to the Faculty of his fitness to undertake work for the diploma.

3 Assessment and examinations
3.1 There shall be four classifications of pass at an annual examination in any course for the diploma; Pass with High Distinction, Pass with Distinction, Pass with Credit, and Pass.

3.2 A candidate who fails to pass in a course and desires to take the course again shall again attend lectures and satisfactorily do such written and practical work as the professor or lecturer concerned may prescribe, unless specifically exempted therefrom after written application to the Faculty for such exemption.

3.3 A candidate who has twice failed to pass the examination in any course or division of a course may not enrol for that course again except by special permission to be obtained in writing from the Faculty and then only under such conditions as may be prescribed.

3.4 For the purpose of this Rule a candidate who is refused permission to sit for examination, or who fails, without a reason accepted by the Head of the Department of Statistics as adequate, to attend all or part of a final examination (or supplementary examination if remaining enrolled for at least eight teaching weeks of that semester, shall be deemed to have failed to pass the examination.

4 Qualification requirements
A candidate for the Graduate Diploma shall regularly attend lectures and tutorials, do such written work as may be prescribed, and pass examinations in a selection of courses chosen from the following list, to an aggregate value of at least 16 units, with at most 6 units from Level II.

4.1 Program of study
4.1.1 compulsory course
3989 Statistical Modelling III 3

4.1.2 Level II Statistics courses
4107 Introduction to Mathematical Statistics II 2
1675 Statistical Modelling and Computation II 2
4523 Statistical Practice II 2
8878 Statistical Theory and Modelling II 2

4.1.3 Level III Statistics courses
8892 Biostatistics III 2
9800 Experimental Design III 2
1411 Life Contingencies III 2
5030 Multivariate Analysis III 2
8387 Non-parametric Methods III 2
4853 Sampling Theory and Practice III 2
2993 Statistics for Quality Improvement III 2
7113 Theory of Statistics III 3
5675 Time Series III 2
4.1.4 at most two of the Level III Applied Mathematics courses:

- 4447 Applied Probability III 2
- 2506 Mathematical Biology III 2
- 2039 Mathematical Programming III 2
- 2208 Stochastic Modelling for Telecommunications III 2

4.1.5 topics taught by the Discipline of Statistics at The Flinders University of South Australia:

- 65303 Applied Statistical Science A
- 65304 Applied Statistical Science B
- 65306 Linear Model Theory
- 65351 Random Variables
- 65305 Stochastic Process
- 65307 Theory of Statistical Inference

note: For details of these topics see Volume II of the Calendar of The Flinders University of South Australia. Students wishing to enrol in these subjects for credit to their Adelaide Graduate Diploma in Applied Statistics need to obtain approval in writing in advance and must comply with Flinders University enrolment procedures.

4.1.6 Statistics courses listed in 5.3.1 for the degree of Master of Mathematical Science.

4.1.7 Other courses which may be offered from time to time by the Department of Statistics in Adelaide University, the Discipline of Statistics in The Flinders University of South Australia and the Biometry Section, the Waite Campus, Adelaide University.

4.1.8 Project

- 6181 Statistics Project 8

In addition to the course work each student will be expected to complete a project chosen in consultation with and supervised by a supervisor from either the Biometry Section, Waite Campus, or the Department of Statistics.

4.1.9 On the recommendation of the Head of the Department of Statistics, the Faculty may exempt a candidate from the need to satisfy the prerequisites prescribed for the course.

Syllabuses
textbooks

Information on appropriate textbooks will be provided by the relevant department and at the preliminary lecture in Orientation Week. Students are expected to procure the latest edition of all textbooks prescribed.

examinations

For each course students may obtain from the relevant department details of the examination in that course including the relative weights given to the components (eg such of the following as are relevant: assessments, semester or mid-year tests, essays or other written or practical work, final written examinations, viva voce examinations.)
Graduate Diploma in Computer Science

The above award has been developed within the framework of the General Academic Program Rules printed at the beginning of this volume of the Handbook. As all students must comply with both the General and Specific Academic Program rules, they are advised to refer to them to gain an understanding of their rights and responsibilities regarding program matters.

Note: Postgraduate tuition fees may apply to this program

Specific Academic Program Rules

1 Duration of program
To qualify for the Graduate Diploma a candidate shall satisfactorily complete a program of study extending over at least one year.

2 Admission
2.1 Except as provided for in 2.2 a candidate for admission to the program for the Graduate Diploma shall have qualified for admission to a degree of the University in a field other than Computer Science, or to a degree of another university accepted for the purpose by the University and have obtained the approval of the Department of Computer Science.

2.2 Subject to the approval of the Council the Faculty may, in special cases and subject to such conditions (if any) as it may see fit to impose in each case, accept as a candidate for the Graduate Diploma a person who does not hold a degree of a university but has given evidence satisfactory to the Faculty of fitness to undertake work for the Graduate Diploma.

2.3 Status and Credit Transfer
2.3.1 Subject to 2.4.1 below, no candidate will be permitted to count for the Graduate Diploma in Computer Science any course that in the opinion of the Department contains substantially the same material as any other course which the candidate has presented already for another qualification.

2.3.2 A candidate who has passed courses in other educational institutions may, on written application, be granted such exemption from the requirements of these rules as the Faculty shall determine. Status may be granted for a maximum of 3 units under 4.1.1 of the Specific Academic Program Rules.

2.4 Articulation with other awards
2.4.1 A candidate who has been enrolled for the Graduate Certificate at Adelaide University and who has not been awarded the Graduate Certificate shall, on written application, be permitted to transfer all equivalent courses towards the Graduate Diploma degree.

2.4.2 A candidate who holds the Graduate Certificate in Computer Science from Adelaide University shall surrender the Graduate Certificate before being awarded the Graduate Diploma.

3 Assessment and examinations
3.1 There shall be four classifications of pass at an examination in any course for the Graduate Diploma: Pass with High Distinction, Pass with Distinction, Pass with Credit and Pass.

3.2 A candidate who fails to pass in a course and desires to take the course again shall again attend lectures and satisfactorily do such written and practical work as the professor or lecturer concerned may prescribe, unless specifically exempted therefrom after written application to the faculty for such exemption.

3.3 A candidate who has twice failed to pass the examination in any course or division of a course may not enrol for that course again except by special permission to be obtained in writing from the Faculty and then only under such conditions as may be prescribed.

3.4 For the purpose of this Rule a candidate who is refused permission to sit for examination, or who fails, without a reason accepted by the Head of the Department of Computer Science as adequate, to attend all or part of a final examination (or supplementary examination if granted) after remaining enrolled for at least eight teaching weeks of that semester, shall be deemed to have failed to pass the examination.

4 Qualification requirements
A candidate for the Graduate Diploma shall regularly attend lectures and tutorials, do such written work as shall be prescribed, and pass examinations in courses offered by the Department of Computer Science totalling 24 units, including the 3 unit course 6263.
Software Engineering and Project. Normally this would require at least 8 units at Level II and at least 7 units at Level III from the following list.

4.1 Program of Study

4.1.1 Level II courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>9492</td>
<td>Computer Science Concepts</td>
<td>3</td>
</tr>
<tr>
<td>1956</td>
<td>Computer Systems</td>
<td>2</td>
</tr>
<tr>
<td>3169</td>
<td>Database and Information Systems</td>
<td>2</td>
</tr>
<tr>
<td>5132</td>
<td>Data Structures and Algorithms</td>
<td>2</td>
</tr>
<tr>
<td>9956</td>
<td>Introduction to Software Engineering</td>
<td>2</td>
</tr>
<tr>
<td>3655</td>
<td>Numerical Methods</td>
<td>2</td>
</tr>
<tr>
<td>9877</td>
<td>Open Systems and Client/Server Computing</td>
<td>2</td>
</tr>
<tr>
<td>2430</td>
<td>Programming Paradigms</td>
<td>2</td>
</tr>
</tbody>
</table>

Level III courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>9811</td>
<td>Advanced Programming Paradigms</td>
<td>2</td>
</tr>
<tr>
<td>6378</td>
<td>Artificial Intelligence</td>
<td>2</td>
</tr>
<tr>
<td>1234</td>
<td>Compiler Construction and Project</td>
<td>3</td>
</tr>
<tr>
<td>5141</td>
<td>Computer Architecture</td>
<td>2</td>
</tr>
<tr>
<td>2328</td>
<td>Computer Networks & Applications</td>
<td>2</td>
</tr>
<tr>
<td>3007</td>
<td>Knowledge Representation</td>
<td>2</td>
</tr>
<tr>
<td>9820</td>
<td>Numerical Analysis</td>
<td>2</td>
</tr>
<tr>
<td>4468</td>
<td>Operating Systems</td>
<td>2</td>
</tr>
<tr>
<td>2382</td>
<td>Programming Techniques</td>
<td>2</td>
</tr>
<tr>
<td>7732</td>
<td>Systems Analysis and Project</td>
<td>3</td>
</tr>
</tbody>
</table>

4.1.2 Subject to permission from the Head of the Department of Computer Science (or nominee) a student may also undertake a selection of courses from the Specific Academic Program Rules for the degree of Master of Computer Science.

4.2 On the recommendation of the Head of the Department of Computer Science, the Faculty may exempt a candidate from the need to satisfy the pre-requisites prescribed for the course.

Syllabuses

textbooks and reference books

Booklists will be made available by the Department of Computer Science.

examinations

Details of course assessment are made available at the relevant lectures during Orientation Week.

9492 Computer Science Concepts

3 units summer semester

15 hours per week for 4 weeks

assessment: two-hour written exam, compulsory practical exercises

note: this course commences in late January
Graduate Diploma in Mathematical Science

The above awards has been developed within the framework of the General Academic Program Rules printed at the beginning of this volume of the Handbook. As all students must comply with both the General and Specific Academic Program rules, they are advised to refer to them to gain an understanding of their rights and responsibilities regarding program matters.

Note: Postgraduate tuition fees may apply to this program

Specific Academic Program Rules

1 Duration of program
To qualify for the Graduate Diploma a candidate shall satisfactorily complete a program of full-time study extending over at least one year or of part-time study extending over at least two years. Except with the permission of the Faculty, the work for the Graduate Diploma shall be completed within four years.

2 Admission requirements
2.1 Except as provided for in 2.2 an applicant for admission to the program of study for the Graduate Diploma shall:
(a) have qualified for a degree of the University or for a degree of another institution accepted for the purpose by the University.
(b) have obtained the approval of the Dean (or nominee) of the School of Mathematical and Computer Sciences.

2.2 Subject to the approval of the Council the Faculty may, in special cases subject to such conditions (if any) as it may see fit to impose in each case, accept as a candidate for the Graduate Diploma a person who does not hold a degree of a university but has given evidence satisfactory to the Faculty of fitness to undertake work for the Graduate Diploma.

3 Assessment and examinations
3.1 There shall be four classifications of pass in each course for the Graduate Diploma: Pass with High Distinction, Pass with Distinction, Pass with Credit, and Pass.

3.2 A candidate shall not be eligible to attend for examination unless the prescribed work has been completed to the satisfaction of the teaching staff concerned.

3.3 A candidate who fails to pass in a course and desires to take the course again shall again attend lectures and satisfactorily do such written and practical work as the teaching staff concerned may prescribe, unless specifically exempted therefrom after written application to the Faculty for such exemption.

3.4 A candidate who has twice failed the examination in any course or division of a course may not enrol for that course again except by special permission to be obtained in writing from the Faculty and then only under such conditions as may be prescribed.

3.5 For the purpose of this Rule a candidate who is refused permission to sit for examination, or who without a reason accepted by the Dean of Mathematical and Computer Sciences (or nominee) fails to attend all or part of a final examination (or supplementary examination if granted) after remaining enrolled for at least eight teaching weeks of that semester, shall be deemed to have failed the examination.

4 Qualification requirements
4.1 To qualify for the Graduate Diploma, a candidate shall satisfactorily complete work to the value of at least 24 units.

4.2 The programs of study for the Graduate Diploma in Mathematical Science will consist of courses to the value of at least 20 units chosen from:
(a) Any Level III course listed in the Handbook by the Departments of the School of Mathematical and Computer Sciences (including Level III courses listed in the School of Mathematical and Computer Sciences entry by the Department of Physics and Mathematical Physics).
(b) Other courses listed in the Handbook for any Ordinary Degree of the University approved for the purpose by the Dean of Mathematical and Computer Sciences (or nominee) except that courses chosen under this provision shall:
(i) not comprise more than one third of the requirements for the Graduate Diploma without the explicit approval of the Faculty.
(ii) Be chosen in consultation with the Dean of Mathematical and Computer Sciences (or nominee).

(c) Courses listed in 8 for the degree of Master of Mathematical Science.

4.3 Project option
This option may comprise up to 4 units of the work for the award. The topics and level of such project work will be decided in consultation with a supervisor appointed by the Faculty. The project options are:

- 1295 Applied Mathematics Diploma 4
- 7128 Applied Mathematics Diploma 2
- 7200 Mathematical Physics Diploma 4
- 1122 Mathematical Physics Diploma 2
- 8803 Pure Mathematics Diploma Project A 4
- 2019 Pure Mathematics Diploma Project B 2
- 8624 Statistics Diploma Project A 4
- 7505 Statistics Diploma Project B 2

4.4 Formal approval of enrolment must be obtained from the Dean of Mathematical and Computer Sciences (or nominee).

Syllabuses

Textbooks
Information on appropriate textbooks will be provided by the relevant department and at the preliminary lecture in Orientation Week.

Examinations
Details of these are made available at the relevant lectures during orientation week.

Assumed Knowledge
Applicants for the Graduate Diploma will be expected to have a knowledge of mathematics equivalent to that which would be obtained by passing 4 level II courses offered by the School of Mathematical and Computer Sciences (ie 8 units).

The School of Mathematical and Computer Sciences offers the Graduate Diploma in Mathematical Science as a full-time or part-time program to cater for a number of different demands:

(a) It is designed for graduates with some mathematical training who wish to extend their mathematical knowledge for professional (eg teachers) or other reasons. The Graduate Diploma allows a flexible program to suit the background of the individual. Thus it may

(i) extend a modest knowledge of mathematics to say the level attained by a graduate with an Ordinary Degree of Bachelor of Science in the School of Mathematical and Computer Sciences or

(ii) at the other extreme provide a program comparable to the level of the Honours degree.

(b) Graduates of a University or other institution who have an interest in proceeding to research in some area of the mathematical sciences but lack the preparation necessary may enrol for the Graduate Diploma in Mathematical Science with the view to gaining the background to begin a program at the Masters level either by coursework or by research.

Graduates wishing to enrol may consult the Dean of Mathematical and Computer Sciences for details of the courses offered preferably in the December of the year preceding their enrolment.

The program is normally one year of full-time study or two years part-time. The Graduate Diploma requires a satisfactory performance in approved courses totalling 24 units. Provision is made in the schedules for candidates to remedy deficiencies in preparation through inclusion of courses at level II. Up to 4 units may be in the form of supervised project work. Students will be allocated a supervisor at the time of enrolment.
Master of Applied Science (Communications)

The above award has been developed within the framework of the General Academic Program Rules printed at the beginning of this volume of the Handbook. As all students must comply with both the General and Specific Academic Program rules, they are advised to refer to them to gain an understanding of their rights and responsibilities regarding program matters.

Note: Postgraduate tuition fees may apply to this program

Specific Academic Program Rules

1 General
A candidate who fulfils the requirements of these Rules may, on the recommendation of the Faculty, be admitted to the degree of Master of Applied Science (Communications).

2 Duration of program
To qualify for the degree a candidate shall satisfactorily complete a program of study extending over either one year if taken full-time or not less than two and not more than five years if taken part-time.

3 Admission
3.1 The following may be accepted as a candidate for the degree:
(a) a person who has qualified in the Adelaide University for the degree of Bachelor of Engineering, Science or Applied Science or holds another academic qualification accepted by the Faculty of Mathematical and Computer Sciences as being sufficient for the purpose. A person admitted under this sub-Rule will normally be required satisfactorily to complete sufficient work of Honours standard as is deemed necessary by the Faculty in addition to satisfying the requirements of the Master’s degree
(b) a person who has qualified in the Adelaide University for the Honours degree of Bachelor of Science in the School of Mathematical and Computer Sciences or the Honours degree of Bachelor of Engineering or the Honours degree of Bachelor of Science in Mathematical Physics
(c) a person who holds a qualification accepted for the purpose by the University.

3.2 Subject to the approval of the Council the Faculty may, in exceptional circumstances and subject to such conditions (if any) as it may see fit to impose in each case, accept as a candidate for the degree a person who does not qualify under 1.1 but who has given evidence satisfactory to the Faculty of fitness to undertake work for the degree.

3.3 Preliminary work
3.3.1 A person whose qualifications have been accepted under either 3.1(b) or 3.1(c) shall be deemed to have satisfied the requirements of this Rule.

3.3.2 Before being admitted either under 3.1(a) or 3.2 a person shall complete the requirements of this schedule by undertaking, and satisfying the examiners in, such programs of study and/or other work as may in his or her case be prescribed by the School of Mathematical and Computer Sciences. The purpose of this rule is that the person should demonstrate the ability to perform at Honours standard.

4 Assessment and examination
Review of academic progress
If in the opinion of the School of Mathematical and Computer Sciences a candidate is not making satisfactory progress the Faculty may, with the consent of the Council, terminate the candidature.

5 Qualification requirements
5.1 To qualify for the degree a candidate shall:
(a) on completion of any preliminary work which may be prescribed in the Specific Academic Program Rules and after consultation with the Dean (or nominee) of the School of Mathematical and Computer Sciences, submit in writing, for approval by the Faculty, a program of advanced study and project work as prescribed in the Specific Academic Program Rules and designed to extend over either one year if taken full-time or not less than two and not more than five years if taken part-time.
(b) undertake an approved program of advanced study and project work under the direction of a supervisor or supervisors who shall be members of the full-time academic staff of the University and appointed by the Faculty, except that in special circumstances the Faculty may also appoint an external supervisor

(c) pass such examination on the candidate's program of advanced study as may be required by the Faculty

(d) present a satisfactory dissertation on the candidate's project.

5.2 Subject to such conditions as it may determine, the Faculty may permit project work to be undertaken outside the University provided that it can be satisfied

(a) that this will result in mutual academic benefit to the candidate and the supervising department

(b) that there will be adequate contact and interaction between the candidate and the supervising department

(c) that the supervisor's access to any experimental work, the candidate's availability for seminars and other discussions, and the publication of results will not thereby be prejudiced.

5.3 Unacceptable combinations of courses

A candidate may not count a course or closely related course or part of a course already presented for another degree or diploma.

5.4 Program of study

A candidate for the degree shall complete satisfactorily a total of at least 24 units. The program of study and project work shall consist of:

(a) One project option chosen from the following list:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>8397</td>
<td>Applied Mathematics Communications Project A</td>
<td>2</td>
</tr>
<tr>
<td>6450</td>
<td>Applied Mathematics Communications Project B</td>
<td>4</td>
</tr>
<tr>
<td>3328</td>
<td>Applied Mathematics Communications Project C</td>
<td>6</td>
</tr>
<tr>
<td>2000</td>
<td>Applied Mathematics Communications Project D</td>
<td>8</td>
</tr>
<tr>
<td>8648</td>
<td>Applied Mathematics Communications Project E</td>
<td>10</td>
</tr>
<tr>
<td>7784</td>
<td>Pure Mathematics Communications Project A</td>
<td>2</td>
</tr>
<tr>
<td>5567</td>
<td>Pure Mathematics Communications Project B</td>
<td>4</td>
</tr>
<tr>
<td>6147</td>
<td>Pure Mathematics Communications Project C</td>
<td>6</td>
</tr>
<tr>
<td>3222</td>
<td>Pure Mathematics Communications Project D</td>
<td>8</td>
</tr>
<tr>
<td>3995</td>
<td>Pure Mathematics Communications Project E</td>
<td>10</td>
</tr>
<tr>
<td>4284</td>
<td>Electrical and Electronic Communications Project A</td>
<td>2</td>
</tr>
<tr>
<td>5208</td>
<td>Electrical and Electronic Communications Project B</td>
<td>4</td>
</tr>
<tr>
<td>9153</td>
<td>Electrical and Electronic Communications Project C</td>
<td>6</td>
</tr>
<tr>
<td>2206</td>
<td>Electrical and Electronic Communications Project D</td>
<td>8</td>
</tr>
<tr>
<td>4573</td>
<td>Electrical and Electronic Communications Project E</td>
<td>10</td>
</tr>
</tbody>
</table>

Note: Candidates should consult the Department in which they intend to do their project about the choice of a suitable supervisor.

(b) Graduate courses and seminars which may be chosen from the following list of courses in the Communications area. All candidates must satisfactorily complete a minimum of 7 courses. Each course represents one twelfth of the requirements for the degree:

(i) Compulsory course

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>8662</td>
<td>Masters Seminar (Telecommunications)</td>
<td>2</td>
</tr>
</tbody>
</table>

(ii) Group A courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>4485</td>
<td>Teletraffic Models</td>
<td>2</td>
</tr>
<tr>
<td>8427</td>
<td>Mathematical Coding and Cryptology</td>
<td>2</td>
</tr>
<tr>
<td>9694</td>
<td>Transform Methods and Signal Processing</td>
<td>2</td>
</tr>
<tr>
<td>3908</td>
<td>Communication Network Design</td>
<td>2</td>
</tr>
<tr>
<td>2297</td>
<td>Masters Topic in Communications</td>
<td>2</td>
</tr>
</tbody>
</table>

(iii) Group B courses - offered by the Department of Electrical and Electronic Engineering and whose availability may vary from year to year:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1008</td>
<td>Advanced Signal Processing</td>
<td>1</td>
</tr>
<tr>
<td>1664</td>
<td>Broadband & ATM Networks</td>
<td>1</td>
</tr>
<tr>
<td>7797</td>
<td>Distributed Systems and Multimedia Communications</td>
<td>1</td>
</tr>
<tr>
<td>1290</td>
<td>Optical Communications</td>
<td>1</td>
</tr>
<tr>
<td>9416</td>
<td>Real Time Systems</td>
<td>1</td>
</tr>
<tr>
<td>9913</td>
<td>Signal Processing A</td>
<td>1</td>
</tr>
<tr>
<td>7663</td>
<td>Signal Processing B</td>
<td>1</td>
</tr>
</tbody>
</table>
(iv) Group C courses
Electronic Engineering, University of South Australia:
- Communications System Theory 2
- Digital Transmission 2
- Error Control Coding 2
- Mobile Communications 2
- Network Protocols 2
- Optical Communications (UniSA) 2
- Satellite Communications 2
- Speech Processing 2

Students wishing to enrol in courses offered by the University of South Australia for presentation to their Adelaide degree will need to obtain permission of the Faculty and must comply with the University of South Australia’s enrolment procedures.

(c) other relevant courses or work which may make up not more than one-third of the work for the degree, as may be approved by the School of Mathematical and Computer Sciences.

Candidates may choose from courses offered by the School of Information Science and Technology at The Flinders University of South Australia or by the Departments of Mathematics and Electronic Engineering at the University of South Australia.

Syllabuses

textbooks
Information on appropriate textbooks will be provided by the relevant department and at the preliminary lecture in Orientation Week.

examinations
For each course students may obtain from the department concerned details of the examination in that course including the relevant weight given to the components (eg such as the following as are relevant: assessments, semester or mid-semester tests, essays or other written or practical work, final written examinations, viva voce examinations).

Note: The postgraduate courses which are offered by departments may vary slightly from year to year. Details of which courses will be available each year are obtainable from the Dean of the School of Mathematical and Computer Sciences.
Master of Computer Science

The above award has been developed within the framework of the General Academic Program Rules printed at the beginning of this volume of the Handbook. As all students must comply with both the General and Specific Academic Program rules, they are advised to refer to them to gain an understanding of their rights and responsibilities regarding program matters.

Note: Postgraduate tuition fees may apply to this program

Specific Academic Program Rules

1 General
A candidate who fulfils the foregoing requirements shall on the recommendation of the School of Mathematical and Computer Sciences be admitted to the degree of Master of Computer Science.

2 Duration of program
A candidate may proceed to the degree by full-time study or, with the approval of the Department of Computer Science and subject to any conditions imposed in the particular case, by part-time study or as an external student. Except by permission of the Faculty, the work for the degree shall be completed:
(a) in the case of a full-time candidate, not less than two years from the date of candidature accepted by the Faculty
(b) in the case of a part-time or external candidate, not less than four years from the date of candidature accepted by the Faculty
(c) in the case of a candidate with an Honours degree in Computer Science, or equivalent, in not less than one year of full-time study or two years of part-time study.

3 Admission
3.1 The School of Mathematical and Computer Sciences may accept as a candidate for the degree any person who has qualified:
(a) for the degree of Bachelor of Science in the School of Mathematical and Computer Sciences or the Bachelor of Information Science, with a major in Computer Science, of the Adelaide University, or for a degree of some other institution accepted for the purpose by the University or
(b) for the Graduate Diploma in Computer Science of the Adelaide University or some other award from another institution accepted for the purpose by the University.

3.2 With the approval of Graduate Studies acting with authority wittingly devolved to it by Council the Faculty may, in exceptional circumstances and subject to such conditions (if any) as it may see fit to impose in each case, accept as a candidate for the degree a person who does not qualify under 3.1, but who has given evidence satisfactory to the Faculty of fitness to undertake work for the degree.

4 Assessment and examination
Review of academic progress
If in the opinion of the School of Mathematical and Computer Sciences a candidate for the degree is not making satisfactory progress, the Faculty may, with the consent of the Council, terminate the candidature and the candidate shall cease to be enrolled for the degree.

5 Qualification requirements
5.1 To qualify for the degree a candidate shall:
(a) satisfy examiners in courses of study as prescribed in the Specific Academic Program Rules
(b) comply with conditions as prescribed in the Specific Academic Program Rules and
(c) present a satisfactory written report and seminar on a supervised project on a course approved by the Department of Computer Science.

5.2 Program of study
note: Intending students should consult the Department of Computer Science early in the year in which they plan to study in order to ascertain whether particular courses will be available in that year, in which semester they will be taught and their precise content

5.2.1 A candidate for the degree shall complete satisfactorily a total of at least 48 units.

5.2.2 A candidate for the degree shall regularly attend lectures and tutorials, do such written and practical work as may be prescribed, and
pass examinations in at least twelve courses offered by the Department of Computer Science at the Honours or Masters level. Other courses may be included, subject to the approval of the Head of the Department. Courses which may be offered by the Department of Computer Science are:

- 6521 Advanced Computer Architecture A 2.5
- 6102 Advanced Computer Architecture B 2.5
- 3280 Advanced Computer Architecture C 2.5
- 6430 Advanced Computer Architecture D 2.5
- 2775 Advanced Database A 2.5
- 1110 Advanced Database B 2.5
- 8058 Advanced Database C 2.5
- 3631 Advanced Database D 2.5
- 9037 Advanced Software Engineering A 2.5
- 2618 Advanced Software Engineering B 2.5
- 5711 Advanced Software Engineering C 2.5
- 6621 Advanced Software Engineering D 2.5
- 6731 Advanced Programming Languages A 2.5
- 6532 Advanced Programming Languages B 2.5
- 4069 Advanced Programming Languages C 2.5
- 5436 Advanced Programming Languages D 2.5
- 6938 Advanced Programming Languages E 2.5
- 5689 Advanced Artificial Intelligence A 2.5
- 2651 Advanced Artificial Intelligence B 2.5
- 3794 Advanced Artificial Intelligence C 2.5
- 2193 Advanced Artificial Intelligence D 2.5
- 1783 Advanced Operating Systems A 2.5
- 7513 Advanced Operating Systems B 2.5
- 9026 Advanced Operating Systems C 2.5
- 7933 Advanced Operating Systems D 2.5
- 6220 Advanced Numerical Analysis A 2.5
- 8109 Advanced Numerical Analysis B 2.5
- 8247 Advanced Numerical Analysis C 2.5
- 2630 Advanced Numerical Analysis D 2.5
- 5766 Relational Programming 2.5
- 2201 Programming Techniques (M.Comp.Sc.) 2.5
- 3903 Systems Analysis (M.Comp.Sc.) 2.5
- 8684 Parallel Computation 2.5
- 7024 Compiler Construction and Project (M.Comp.Sc.) 2.5
- 6293 Advanced Programming Paradigms (M.Comp.Sc.) 2.5
- 9516 Artificial Intelligence (M.Comp.Sc.) 2.5
- 6031 Computer Architecture (M.Comp.Sc.) 2.5
- 6794 Computer Networks (M.Comp.Sc.) 2.5
- 9901 Operating Systems (M.Comp.Sc.) 2.5
- 3675 Software Engineering and Project (M.Comp.Sc.) 2.5
- 9047 Numerical Analysis (M.Comp.Sc.) 2.5
- 7307 University of South Australia Subject A 2.5
- 6782 University of South Australia Subject B 2.5
- 1752 University of South Australia Subject C 2.5
- 6417 University of South Australia Subject D 2.5
- 6037 University of South Australia Subject E 2.5
- 9284 University of South Australia Subject F 2.0
- 1703 Flinders University Subject A 2.5
- 6156 Flinders University Subject B 2.5
- 9260 Flinders University Subject C 2.5
- 8031 Flinders University Subject D 2.5
- 8759 Flinders University Subject E 2.5
- 7470 Flinders University Subject F 2.5

5.2.3 A candidate shall also satisfactorily undertake and complete at least five Masters Project courses, under the guidance of a supervisor, and provide a public seminar and written report on the investigation. The Masters Project courses are:

- 9112 Master Project A 2.5
- 3126 Master Project B 2.5
- 4292 Master Project C 2.5
- 5866 Master Project D 2.5
- 3444 Master Project E 2.5
- 9574 Master Project F 2.5
- 9882 Master Project G 2.5
- 8868 Master Project H 2.5

5.2.4 In the case of a candidate with an Honours degree in Computer Science, the courses required for the award of the Master’s degree may be reduced.

Syllabuses

Prospective students should consult the Department early in the year in which the program is being offered to obtain advice as to the specific content of the program. The field of study of the project can also be determined at that time.
Master of Information Technology

The above award has been developed within the framework of the General Academic Program Rules printed at the beginning of this volume of the Handbook. As all students must comply with both the General and Specific Academic Program rules, they are advised to refer to them to gain an understanding of their rights and responsibilities regarding program matters.

Note: Postgraduate tuition fees may apply to this program

Specific Academic Program Rules

1 Duration of program
A candidate shall:
(a) complete any additional compulsory work as the Faculty may determine;
(b) except with the permission of the Faculty, undertake an approved program of advanced study which, if taken full-time, extends over one and a half years to two years (depending on the candidate’s previous studies in Computer Science), and not more than six years if taken part-time.

2 Admission
2.1 The Faculty may accept as a candidate for the degree any person who has completed one of the following at Adelaide University:
- Graduate Certificate in Computer Science
- Graduate Diploma in Computer Science
- a bachelor degree that includes a major in Computer Science.

2.2 The Faculty may accept as a candidate for the degree any person who has completed studies at another institution, where those studies are accepted by the University as equivalent to studies specified in 1.1 above.

2.3 Subject to the approval of Council, the Faculty may, in special cases accept as a candidate for the degree a person who does not hold the qualifications specified in 1.1 or 1.2.

2.4 A candidate admitted under 1.3 above will be required to undertake such additional compulsory work as the Faculty may determine. This additional work will not exceed 12 units of study and may be taken concurrently with the Masters study.

2.5 Admission to the program of study for the degree of Master of Information Technology will be based on a combination of results in university studies, other achievements, and the outcome of an interview.

2.6 Credit transfer
A candidate who has passed courses in this or other educational institutions and who has not presented these courses towards any award may, on written application to the Faculty, be granted such exemption from the requirements of these rules as the Faculty shall determine. Status may be granted for a maximum of 9 units under 2.6.1 of the Specific Academic Program Rules.

3 Assessment and examinations
3.1 No material presented for any other degree within this or any other institution shall be submitted.

3.2 There shall be four classifications of Pass in each course for the degree: Pass with High Distinction, Pass with Distinction, Pass with Credit and Pass.

3.3 If a course has a Conceded Pass classification for the purpose of another award any such course passed with this classification shall not count towards the requirements for the degree.

3.4 A candidate shall not be eligible to attend for examination unless the prescribed work has been completed to the satisfaction of the teaching staff concerned. A candidate who is not eligible to attend for examination shall be deemed to have failed the examination.

3.5 A candidate who fails in a course, and desires to take the course again, shall again attend lectures and satisfactorily do such written and practical work as the teaching staff concerned may prescribe, unless specifically exempted therefrom after written application to the Faculty for exemption.

3.6 A candidate who has twice failed in any course may not enrol for that course again except by special permission of the Faculty and then only under such conditions as may be prescribed.
3.7 **Review of academic progress**

If in the opinion of the Faculty a candidate for the degree is not making satisfactory progress, the Faculty may, with the consent of Council, terminate the candidature and the candidate shall cease to be enrolled for the degree.

4 **Qualification requirements**

4.1 To qualify for the degree a candidate shall:

i satisfactorily complete any additional compulsory work which may be prescribed and

ii satisfy examiners in courses of study prescribed in these rules.

4.2 **Course of study and project work**

4.2.1 The program consists of 36 units of study which shall normally extend over one and a half years of full-time study, and consists of two components:

(a) Computer Science courses and

(b) Management courses

4.2.2 To qualify for the degree a candidate shall satisfactorily complete a program of study comprising coursework courses as follows:

(a) at least 20 units selected from

 (i) courses listed in Specific Academic Program Rule 6.2 of the Master of Computer Science and

 (ii) non-project based courses listed in Specific Academic Program Rule 7.1 of the Master of Software Engineering;

(b) the balance made up of any of the following:

 (i) Information Technology related courses as offered at Level IV, Level V, Honours and postgraduate courses drawn from the School of Engineering, and the School of Mathematical and Computer Sciences. Students must have the appropriate prerequisites for the courses selected

 (ii) Management courses selected from those offered by the Graduate School of Management as approved by the Head of Department

 (iii) other courses to the value of up to 6 units may be included subject to the approval of the Head of Department.

4.2.3 A candidate may not count towards the degree a course or closely related course or part of a course that has already been presented for another degree or diploma.

4.2.4 To complete a program of study in a course a candidate shall, unless exempted by the Head of the Department offering the course:

(a) regularly attend the prescribed lectures, tutorials, workshops and seminars and

(b) undertake such computing work, project work, practical work, field work and case studies, do such reading, written and oral work and pass such examinations as the Head of the Department offering the course may prescribe.

4.2.5 Each candidate’s program of study must be approved by the Dean (or nominee) at enrolment each year.

Syllabuses

Prospective students should consult the course coordinator early in the year in which the course is being offered regarding the content of the specific courses that are to be offered in that year.

notes:

1 not all electives will necessarily be offered in any one year

2 students may be interviewed to assess their suitability for course choices.
Master of Mathematical Science

The above award has been developed within the framework of the General Academic Program Rules printed at the beginning of this volume of the Handbook. As all students must comply with both the General and Specific Academic Program rules, they are advised to refer to them to gain an understanding of their rights and responsibilities regarding program matters.

Note: Postgraduate tuition fees may apply to this program

Specific Academic Program Rules

1 General
1.1 The Faculty shall appoint one or more supervisors to guide a candidate’s work.
1.2 A candidate may not count a course or closely related course or part of a course already presented for another degree or diploma.
1.3 A candidate who fulfils the requirements of these Rules may, on the recommendation of the Faculty, be admitted to the degree of Master of Mathematical Science.

2 Duration of program
A candidate shall:
(a) complete any preliminary work which may be prescribed;
(b) undertake an approved program of advanced study and project work under the direction of a supervisor or supervisors extended over one year if taken full-time or not less than two and not more than four years if taken part-time.

3 Admission
3.1 The following may be accepted as a candidate for the degree:
(a) a person who has qualified in the Adelaide University for the Honours degree of Bachelor of Science in the School of Mathematical and Computer Sciences or the Honours degree of Bachelor of Engineering or the Honours degree of Bachelor of Science in Mathematical Physics, or holds another academic qualification accepted by the School of Mathematical and Computer Sciences as equivalent.
(b) a person who has qualified in the Adelaide University for the degree of Bachelor of Engineering, Science or Applied Science or holds another academic qualification accepted for the purpose by the School of Mathematical and Computer Sciences. A person admitted under this sub-Rule will normally be required satisfactorily to complete sufficient work of Honours standard as is deemed necessary by the Faculty in addition to satisfying the requirements of the Master’s degree;
3.2 Subject to the approval of the Council the Faculty may, in exceptional circumstances and subject to such conditions (if any) as it may see fit to impose in each case, accept as a candidate for the degree a person who does not qualify under 3.1 above but who has given evidence satisfactory to the Faculty of fitness to undertake work for the degree.
3.3 Preliminary work
3.3.1 A person whose qualifications have been accepted under 3.1(a) shall be deemed to have satisfied the requirements of this schedule.
3.3.2 A candidate admitted under either 3.1(b) or 3.2 shall complete the requirements of this Rule by undertaking, and satisfying the examiners in, such programs of study and/or other work as may in his or her case be prescribed by the School of Mathematical and Computer Sciences. The purpose of this schedule is that the person should demonstrate the ability to perform at Honours standard.

4 Enrolment
Review of academic progress
If in the opinion of the School of Mathematical and Computer Sciences a candidate is not making satisfactory progress the Faculty may, with the consent of the Council, terminate the candidature.

5 Qualification requirements
5.1 To qualify for the degree a candidate shall:
(a) pass such examination on the candidate’s program of advanced study as may be required by the Faculty and
(b) present a satisfactory dissertation on the candidate’s project.
5.2 Project work
Subject to such conditions as it may determine, the Faculty may permit project work to be undertaken outside the University provided that it can be satisfied:
(a) that this will result in mutual academic benefit to the candidate and the supervising department
(b) that there will be adequate contact and interaction between the candidate and the supervising department and
(c) that the supervisor’s access to any experimental work, the candidate’s availability for seminars and other discussions, and the publication of results will not thereby be prejudiced.

5.3 Program of study
5.3.1 The program of study and project work to the value of at least 24 units shall consist of:
(a) supervised project work consisting of one of the following:
 - 2427 Masters Applied Mathematics Minor Project 5.0
 - 8223 Masters Applied Mathematics Major Project 7.5
 - 4818 Masters Mathematical Physics Minor Project 5.0
 - 4496 Masters Mathematical Physics Major Project 7.5
 - 2545 Masters Pure Mathematics Minor Project 5.0
 - 7538 Masters Pure Mathematics Major Project 7.5
 - 2159 Masters Statistics Minor Project 5.0
 - 2750 Masters Statistics Major Project 7.5
(b) a seminar presentation consisting of one of the following:
 - 3672 Masters Seminar (Applied) 1.5
 - 8042 Masters Seminar (Pure) 1.5
 - 3652 Masters Seminar (Statistics) 1.5
(c) courses:
 (i) chosen from the following list
 - 5507 Advanced Hydrodynamics 2.5
 - 5383 Aerodynamics 2.5
 - 8510 Applied Mathematics Honours Topic A 2.5
 - 6501 Applied Mathematics Honours Topic B 2.5
 - 5819 Applied Mathematics Honours Topic C 2.5
 - 1128 Applied Mathematics Honours Topic D 2.5
 - 8796 Applied Mathematics Honours Topic E 2.5
 - 8191 Applied Mathematics Honours Topic F 2.5
 - 8918 Asymptotic Approximations 2.5
 - 8943 Boundary Value Problems 2.5
 - 6779 Chaos and Fractals 2.5
 - 5621 Combinatorial Optimisation 2.5
 - 6426 Communication Network Design (Masters) 2.5
 - 5061 Continuum Mechanics 2.5
 - 1405 Financial Derivatives 2.5
 - 6574 Finite Difference Methods for PDEs 2.5
 - 6650 Foundations of Financial Economics 2.5
 - 6130 Martingales 2.5
 - 6576 Mathematical Economics (Masters) 2.5
 - 4820 Mathematical Methods (Masters) 2.5
 - 4645 Modelling and Analysis of Computer Networks 2.5
 - 6071 Networks of Queues 2.5
 - 5136 Robotics 2.5
 - 5440 Stochastic Differential Equations 2.5
 - 8250 Stochastic Processes 2.5
 - 4169 Systems of Queues 2.5
 - 1178 Teletraffic Models (Masters) 2.5
 - 4957 Tidal Models 2.5
 - 3848 Transform Methods and Signal Processing (Masters) 2.5
 - 2233 Variational Methods for PDEs 2.5
 - 6080 Advanced Electromagnetism 2.5
 - 4928 Cosmology 2.5
 - 3927 General Relativity 2.5
4578 Gauge Theory 2.5
4060 Quantum Mechanics/Particle Physics 2.5
3681 Relativistic Quantum Mechanics and Fields 2.5
5938 Statistical Mechanics/Many-Body Theory 2.5
1679 Topics in Mathematical Physics A 2.5
3348 Topics in Mathematical Physics B 2.5
Pure Mathematics 2.5
7757 Galois Theory 2.5
9160 Measure Theory 2.5
1179 Analysis 1 2.5
7745 Analysis 2 2.5
7584 Analysis 3 2.5
4808 Algebra 1 2.5
4276 Algebra 2 2.5
2642 Algebra 3 2.5
1820 Geometry 1 2.5
5477 Geometry 2 2.5
9480 Geometry 3 2.5
1912 Number Theory 1 2.5
8468 Number Theory 2 2.5
7777 Advanced Convexity 2.5
6406 Topology 2.5
2903 Problem Solving 2.5
2342 Coding Theory 2.5
4362 Analysis & Signal Processing 2.5
1512 Set Theory 2.5
4122 History of Mathematics (Masters) 2.5
7965 Pure Mathematics Honours Topic A 2.5
1538 Pure Mathematics Honours Topic B 2.5
9735 Pure Mathematics Honours Topic C 2.5
5344 Pure Mathematics Honours Topic D 2.5

Statistics
7464 Advanced Multivariate Methods 2.5
2466 Advanced Nonparametric Statistics 2.5
8331 Statistical Software (Masters) 2.5
3228 Analysis of Repeated Measures 2.5
9553 National Markets Statistics 2.5
6061 Advanced Experimental Design 2.5

9148 Regression Diagnostics 2.5
1884 Advanced Medical Statistics 2.5
9348 Advanced Inference 2.5
2684 Statistics Honours Topic A 2.5
6827 Statistics Honours Topic B 2.5
7467 Statistics Honours Topic C 2.5
4013 Statistics Honours Topic D 2.5

(ii) Other courses offered by the Adelaide University or other tertiary institutions in South Australia which are accepted by the Faculty as being equivalent to those listed above.

(iii) Students may present other relevant courses or work, to the value of at most five units, as may be approved by the School of Mathematical and Computer Sciences.

5.3.2 The availability of all courses in any year is conditional on there being adequate staffing levels.

Syllabuses
Prospective students should consult the Department early in the year in which the program is being offered to obtain advice as to the specific content of the program. The field of study of the major and minor projects can also be determined at that time.
Master of Mathematical Sciences
(Signal and Information Processing)

The above award has been developed within the framework of the General Academic Program Rules printed at the beginning of this volume of the Handbook. As all students must comply with both the General and Specific Academic Program rules, they are advised to refer to them to gain an understanding of their rights and responsibilities regarding program matters.

Note: Postgraduate tuition fees may apply to this program

Specific Academic Program Rules

1 General
A candidate who fulfils the foregoing requirements shall, on the recommendation of the School of Mathematical and Computer Sciences, be admitted to the degree of Master of Mathematical Sciences (Signal and Information Processing).

2 Duration of program
A candidate shall:
(a) complete any preliminary work which may be prescribed;
(b) undertake an approved program of advanced study which extends over one and a half years if taken full-time or not less than three and not more than six years if taken part-time.

3 Admission
3.1 The following may be accepted as a candidate for the degree:
Any person who has qualified for an Honours degree of Bachelor of Science in either Mathematics or Physics or a degree of Bachelor of Engineering (Electrical and Electronic) with Honours of the Adelaide University, or for an equivalent degree of another tertiary institution accepted for the purpose by the University.

3.2 Graduates with Honours in other areas of Engineering, or in related scientific areas, may be accepted at the discretion of the Faculty.

3.3 Subject to the approval of the Council, the Faculty may, in exceptional circumstances and subject to such conditions (if any) as it may see fit to impose in each case, accept as a candidate for the degree a person who does not qualify under 3.1 or 3.2 but who has given evidence satisfactory to the Faculty of fitness to undertake work for the degree.

4 Assessment and examination
Review of academic progress
If in the opinion of the School of Mathematical and Computer Sciences a candidate for the degree is not making satisfactory progress, the Faculty may, with the consent of the Council, terminate the candidature.

5 Qualification requirements
5.1 To qualify for the degree a candidate shall:
(a) comply with conditions as prescribed in the Specific Academic Program Rules and
(b) pass such examinations on the candidate’s program of advanced study as may be required by the Faculty.

5.2 Unacceptable combinations of courses
Except as provided in 5.3.3, a candidate may not count towards the degree a course or closely related course or part of a course that has already been presented for another degree or diploma.

5.3 Program of study
5.3.1 A candidate for the degree shall regularly attend lectures and tutorials, do such written and practical work as may be prescribed, and satisfactorily complete courses to the value of at least 36 units as defined in 5.3.2.

5.3.2 The program of study to the value of at least 36 units shall consist of:
(i) courses to the value of at least 20 units selected from:
 6215 Adaptive Signal Processing 2
 6870 Beamforming and Array Processing 2
 3938 Coding and Cryptology III 2
 6880 Detection, Estimation and Classification 2
 2277 Error Control Coding 2
Syllabuses

Prospective students should consult the program coordinator early in the year in which the program is being offered, regarding the content of the specific courses that are to be offered in that year.

textbooks

Information on appropriate textbooks will be provided by the course coordinator at the commencement of each course.

examinations

For each course students may obtain from the course coordinator details of the examination in that course including the relevant weight given to the components (eg such as the following as are relevant: assessments, semester or mid-semester tests, essays or other written or practical work, final written examinations, viva voce examinations).
Master of Science in the School of Mathematical and Computer Sciences

The above award has been developed within the framework of the General Academic Program Rules printed at the beginning of this volume of the Handbook. As all students must comply with both the General and Specific Academic Program rules, they are advised to refer to them to gain an understanding of their rights and responsibilities regarding program matters.

Note: Postgraduate tuition fees may apply to this program

Specific Academic Program Rules

1 Duration of program
A candidate may proceed to the degree by full-time study; or, with the approval of the department concerned and subject to any conditions imposed in the particular case, by part-time study; or, as an external student. Except by special permission of the School, the work for the degree shall be completed and the thesis submitted:
(a) in the case of a full-time candidate, not less than one year or more than three years from the date of candidature accepted by the Faculty
(b) in the case of a part-time or external candidate, not less than two years nor more than six years from the date of candidature accepted by the Faculty.

2 Admission
2.1 The following persons may become candidates for the degree of Master of Science in the School of Mathematical and Computer Sciences: (a) Bachelors of Arts, (b) Bachelors of Science, (c) other graduates whose academic qualifications are accepted by the School of Mathematical and Computer Sciences as sufficient.

2.2 Provided that, subject to the approval of the Board of Graduate Studies acting with authority willingly devolved to it by Council, the Faculty may, in special cases and subject to such conditions (if any) as it may see fit to impose in each case, accept as a candidate for the degree a person who does not hold a degree of a university, but has given evidence satisfactory to the Faculty of fitness to undertake work for the degree.

2.3 Unless an applicant has obtained an Honours degree from a University in a suitable Mathematical and Computer Sciences discipline or a qualification deemed by the Faculty to be equivalent, the applicant shall, before being admitted as a candidate, pass such qualifying examination as the Faculty may in the circumstances determine.

2.4 A person seeking enrolment as a candidate for the degree shall apply to the Faculty and shall submit as part of that application, a statement of that person’s academic standing, accompanied, in the case of a person who is not a graduate of Adelaide University, by acceptable proof of such standing. Each applicant shall submit an outline of the research work or investigation on which it is intended to submit a thesis. The Faculty, if it approves the subject of this research, may appoint a supervisor to guide the candidate in the work.

3 Assessment and examinations
3.1 The Faculty shall appoint a Board of Examiners to report upon the thesis and any supporting papers that the candidate may submit. The Board of Examiners may require any candidate to pass an examination in the branch of science to which the candidate’s original research or investigation is cognate.

3.2 A candidate for the degree of Doctor of Philosophy whose work is considered by the Faculty, after report by the examiners appointed to adjudicate upon it, not to be of sufficient merit to qualify for the degree of Doctor but of sufficient merit for the degree of Master may be admitted to the degree of Master provided that the candidate is qualified to become a candidate for the degree.

3.3 On completion of the work a candidate shall lodge three copies of the thesis prepared in accordance with directions given to candidates from time to time. Refer to the Guidelines on Higher Degrees by Research and Specifications for Thesis in this volume.

3.4 A candidate who complies with the foregoing conditions and satisfies the Board of Examiners shall on the recommendation of
the School of Mathematical and Computer Sciences be admitted to the degree of Master of Science in the School of Mathematical and Computer Sciences.

3.5 **Review of academic progress**
A candidate’s progress shall be reviewed annually by the Faculty.

4 **Qualification requirements**
To qualify for the degree a candidate shall satisfactorily complete a program of study consisting of one of the following approved options:

(a) a candidate shall submit a thesis upon an approved course and shall adduce sufficient evidence that the thesis is his/her own work. The thesis shall give the results of original research or of an investigation on which the candidate has been engaged. A candidate may also submit other contributions to mathematical sciences in support of his/her candidature

(b) a candidate shall pursue a program of advanced study comprising one-third coursework* and two-thirds research and shall submit a thesis describing the results of this research. The thesis while subject to the same conditions as those applying under option (a), would normally be of a less substantial character.

* note: this represents courses to the value of 8 units per year for full-time candidates or equivalent part-time.

5 **Courses of study**
Courses listed in the Specific Academic Program Rules of Master’s degrees in the School of Mathematical and Computer Sciences and deemed suitable for the degree by the Dean of Mathematical and Computer Sciences (or nominee).

Notwithstanding the above, the availability of all courses is conditional on the availability of staff and facilities and sufficient enrolments.